# Initiating Climate Change Adaptation in Rural Kyrgyzstan: Methods and Findings

Laurie Ashley Natural Resource Management Specialist Aga Khan Foundation, Kyrgyzstan

International Conference Mountains & Climate: Food Security & Land Resources Under Climate Change– Issues of Adaptation



AGA KHAN FOUNDATION

## Need and Motivation for CCA

- Farmers: In our program areas, farmers' frequently commented that changes in the weather were impacting their livelihoods
- Lack of CC information: Little information about <u>existing</u> climate change trends and impacts in rural Kyrgyzstan
- Impact on natural resources: CC trends and impacts are key drivers in local resource availability and condition, and in determining appropriate SLM practices
- Kyrgyzstan is the third most vulnerable country to climate change of 28 countries in Europe and Central Asia (Fay et al. 2010)

### MSDSP KG CCA Programme

### I. Generate Locally Relevant, Science Based Climate Change Information Step 1. District-Level CC Analysis

Step 2. Village CC Resilience Assessments

### **II. Share Climate Change Information**

Step 3. Community Information Sessions Step 4. Produce and Distribute CCA Media and Materials

Step 5. Engage Stakeholders

### III. Put Climate Change Information to Use Step 6. Community Adaptation Planning Step 7. Implementing Adaptation Projects and Activities



### Kara Kulja, Osh



### Phase I. Generate Locally Relevant, Science Based CC Information Objective & Methods

### **Objective**

 To collect locally relevant, science based CC information for use in community adaptation planning and action

### **Methods**

- District CC analysis
- Village CC resilience assessments





# **District CC Analysis**

- Are rural communities in Kara Kulja experiencing CC trends and associated impacts?
- What are best practices for adaptation in Kara Kulja?



# Key Findings: CC Trends

| Data Source                                                 | Precipitation                                                                                                                      | Temperature                        | Wind                                          | <b>River flow</b>                                            |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| Local Experience<br>(Kara Kulja)                            | heavy<br>precipitation                                                                                                             | <b>^</b> *                         | ↑<br>More variable<br>direction and<br>timing | ٨                                                            |
| <b>Hydro-Met Data</b><br>(Kara Kulja and Uzgen<br>stations) | <ul> <li>✓summer/fall</li> <li>✓winter/spring</li> <li>Overall increase</li> <li>of 12mm (1940-2010)</li> </ul>                    | <b>↑</b><br>1.1°C (1960-<br>2010)  | No info                                       | ↑<br>5.95 m³/s Tar<br>9.45 m³/s Kara<br>Kulja<br>(1940-2010) |
| Climate Science<br>(IPCC, National<br>Comms)                | <ul> <li>↑ heavy<br/>precipitation</li> <li>↓ summer</li> <li>↑ winter</li> <li>-3% precipitation</li> <li>(2000- 2100)</li> </ul> | <b>↑</b><br>~3.7°C (2000-<br>2100) | ٨                                             | ★before 2030 ↓ after 2030                                    |

\* Also, unseasonal weather and abrupt change of seasons

# **Key Findings: Existing Adaptation**

Drying/Drought

- Change grazing practices to access remote pastures (Kyzyl Zhar)
- Switch to more drought resistant crops, i.e. from wheat to barley (Kenesh)
- Increase perennial fodder cultivation (Kashka Zhol, Kara Kulja)
- Use tax law to receive tax exemption when crops are lost or damaged by drought (Kyzyl Zhar, Kashka Zhol, Oi Tal, and Alaikuu)
- Change to water efficient irrigation practices (Kashka Zhol)
- Ayil Okmotu does not collect rent for AO lands during drought (Kashka Zhol)
- Increase reliance on credit and dependency on remittances (all)
- Sell livestock to buy hay (all)

#### Wind

- Plant wind breaks (Kara Kulja)
- Secure roofs (Chalma)

#### Heavy Snow

• Increase fodder production and storage for longer winters (Kapchegai)

# **Key Findings: Existing Adaptation**

- Mainly behavioral adaptation measures with some some financial and institutional measures
- No informational or technological measures
- Future adaptation should build on existing measures and local expertise

| Form          | Examples for Future Adaptation                                                                                 |
|---------------|----------------------------------------------------------------------------------------------------------------|
| Informational | Access to climate change information; improved weather forecasting                                             |
| Technological | Water efficient irrigation system; drought resistant crop varieties                                            |
| Behavioural   | Shift the crop calendar according to new conditions; Relocate outside hazard areas                             |
| Financial     | Improve access to insurance, credit, and/or savings                                                            |
| Institutional | Establish early warning and emergency response systems; Utilize appropriate land zoning and building standards |

# 2. Village CC resilience assessments

- Are rural communities in Kara Kulja vulnerable to CC?
- Are key resources resilient to CC trends and impacts?

### Methodology

- FGDs, interviews, mapping, observation
  - Vulnerability assessment
    - Exposure, sensitivity, adaptive capacity
  - Key resource resilience
  - GPS and site examination



# Vulnerability



- <u>Exposure</u>: The nature and degree to which a system is exposed to significant climate variations
- <u>Sensitivity</u>: The degree to which a system is affected, either positively or negatively, by climate-related factors
- <u>Adaptive Capacity</u>: The ability of a system to adjust to climate change impacts, to moderate potential damages, to take advantage of opportunities, or to cope with the consequences

# Key Findings: Vulnerability in Kara Kulja

#### Exposure

- temperature

   global projections
- f intensity of heavy precipitation events
- 🛧 wind
- **↑** weather and seasonal variability

#### Sensitivity

- Agriculture highly vulnerable to CC
- Negative impacts realizeddrying/drought, flood, wind/rain storms, erosion
  Positive impacts not realized-growing season, carbon fertilization

#### Adaptive Capacity

Resources: Natural Human Social Physical Financial

Positive and negative resource attributes

### Resilience of Key Resources in Kara Kulja

- Community Identified Key Resources
- Examine Resilience of Key Resources





# Key Findings: Resource Resilience

Community Identified Key Resources: Water, Pasture, Cultivated Lands, Hay, Livestock

#### **Example for Pasture Resilience**

Positive attributes

- Cooperation between village council and local government on resource management
- People value pasture and have a desire to conserve them
- Pasture committees are established

Negative attributes

- National law in place but not well implemented at a local level
- Increasing livestock numbers & demand on pastures
- Increasing livestock disease
- Increasing wind/water erosion and landslide damage resulting from climate trends & poor management



# **Thank You**

Laurie.Ashley@gmail.com Aga Khan Foundation, 312 621 912